Transmissive Optical Sensor with Schmitt-Trigger Logic Output

Description
The TCYS5201 is a transmissive sensor that includes an infrared emitter and a Photo Schmitt-Trigger with digital output interface, located face-to-face on the optical axes. The package blocks visible light and includes mounting clips and a three pin connector.

Features
- **Package type:** connector, 3 pin Molex 5267-NA series order number: 22-03-5035
- **Detector type:** Photo Schmitt-Trigger
- **Dimensions:**
 - L 19.8 mm x W 9.9 mm x H 18 mm
 - Gap: 5 mm
 - Aperture: 0.5 mm
- **Typical output current under test:** $I_C = 16 \text{ mA}$
- **Output voltage level is LOW, if IR beam is not interrupted**
- **Output device TTL compliant, open collector**
- **Daylight blocking filter**
- **Emitter wavelength:** 950 nm
- **Lead (Pb)-free soldering released**
- **Lead (Pb)-free component in accordance with RoHS 2002/95/EC and WEEE 2002/96/EC**
- **Minimum order quantity:** 400 pcs, 400 pcs/bulk

Applications
- Detection of opaque materials, documents etc.
- Paper position sensor in copy machines
- Position sensor for shaft encoders

Handling Precaution
Connect a capacitor with more than 100 nF between V_S and ground in order to stabilize power supply voltage!

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test condition</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td></td>
<td>V_S</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
<td>V_O</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Low level output current</td>
<td></td>
<td>I_{OL}</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Operation temperature range</td>
<td></td>
<td>T_{amb}</td>
<td>- 25 to + 85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_{stg}</td>
<td>- 40 to + 100</td>
<td>°C</td>
</tr>
</tbody>
</table>
Electrical Characteristics

$T_{\text{amb}} = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td>V_S</td>
<td>4.5</td>
<td>5.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>High level supply current</td>
<td>$V_S = 5 , V$</td>
<td>I_S</td>
<td>15</td>
<td>30</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Low level supply current</td>
<td>$V_S = 5 , V$</td>
<td>I_S</td>
<td>15</td>
<td>30</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>High level output voltage</td>
<td>$V_S = 5 , V, R_L = 1 , k\Omega$</td>
<td>V_{OH}</td>
<td>4.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Low level output voltage</td>
<td>$V_S = 5 , V, I_{OL} = 16 , mA$</td>
<td>V_{OL}</td>
<td>0.18</td>
<td>0.35</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>$V_S = 5 , V, R_L = 47 , k\Omega$</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td>KHz</td>
</tr>
</tbody>
</table>

1) Infrared beam interrupted
2) Infrared beam not interrupted

Note: Operating conditions are stabilized after 100 µs of supply voltage turn on.

Switching Characteristics

$T_{\text{amb}} = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise time</td>
<td>$V_S = 5 , V, R_L = 1 , k\Omega$ (see figure 1)</td>
<td>t_r</td>
<td>50.0</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>$V_S = 5 , V, R_L = 1 , k\Omega$ (see figure 1)</td>
<td>t_f</td>
<td>20.0</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

![Figure 1. Test circuit and pin connection](image1.png)

![Figure 2. Pulse diagram](image2.png)
Typical Characteristics

$T_{amb} = 25 \, ^\circ\text{C}$, unless otherwise specified

- **Figure 3**: Trip point characteristic
- **Figure 4**: Frequency response
- **Figure 5**: Rel. Supply Current vs. Ambient Temperature
- **Figure 6**: Output Current vs. Output Voltage
- **Figure 7**: Output Voltage vs. Ambient Temperature
Package Dimensions in mm

1 = GND
2 = VO
3 = VS

weight: ca. 1.01g
Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.